уравнение директрисы D2:
Рис. 15
Директрисы гиперболы целиком расположены в области G, не содержащей точек. В самом деле, ранее мы убедились, что полоса G1 определяемая в выбранной системе координат Оху неравенством |х|<а, содержится в области G. Но эта полоса содержит директрисы гиперболы, так как, согласно (1.31), для точек директрис |x| =, либо для гиперболы е>1. Расположение директрис гиперболы указано на рис. 6.11.Следовательно, мы можем обосновать расположение директрис гиперболы, указанное на рис. 6.11. Очевидно, что точки левой (правой) ветви гиперболы и ее центр О расположены по разные стороны от директрисы D1 (D2), а точки правой (левой) ветви гиперболы и ее центр О расположены по одну сторону от директрисы D1 (D2).
Обозначим через р расстояние от фокуса гиперболы до соответствующей этому фокусу директрисы. Поскольку расстояние от центра гиперболы до директрисы равно а расстояние от центра гиперболы до фокуса равно с, то
. Так как с=ае, то для р получаем формулу
(1.32)
Докажем теорему, выясняющую важное свойство гиперболы и ее директрис.
Теорема 1.2. Отношение расстояния r1 от точки М гиперболы до фокуса Fi к расстоянию di от этой точки до отвечающей этому фокусу директрисы Di равно эксцентриситету е этой гиперболы.
Доказательство. Для доказательства этой теоремы нужно рассмотреть следующие четыре случая: 1) точка M находится на левой ветви гиперболы, исследуется фокус F1 и директриса D1, 2) точка М находится на правой ветви гиперболы, исследуется фокус F1 и директриса D1; 3) точка М на левой ветви, фокус F2, директриса D2; 4) точка М на правой ветви, фокус F2, директриса D2. Так как рассуждения для каждого из случаев однотипны, то мы ограничимся лишь первым случаем. Начало декартовой прямоугольной системы координат в середине отрезка FiF2, а оси Ох и Оу направим так, как указано на рис. 6.11. Так как абсцисса х любой точки М(х, у) левой ветви гиперболы отрицательна, то расстояние r1 от этой точки до фокуса F1 согласно формулам (1.11), равно . Так как
, то для r1 получим выражение
r1=(1.33)
Директриса D1 определяется первым из уравнений (1.31). Нормированное уравнение этой директрисы имеет вид
(1.34)
Так как точка М левой ветви гиперболы и начало координат находятся по разные стороны от директрисы DI,, то расстояние d1 от точки М до директрисы D1 равно отклонению М от D1 и мы получим (в силу (1.34) и теоремы 1.1):
.(1.35)
Используя формулы (1.33) и (1.35), найдем, . Для первого случая теорема доказана. Остальные случаи рассматриваются аналогично.
Рис. 16
Определение эллипса и гиперболы, основанное на их свойстве по отношению к директрисам.
Теоремы 1.1 и 1.2, доказанные в предыдущем пункте, выясняют свойство отличного от окружности эллипса и гиперболы, связанное с директрисами этих кривых. Убедимся в том, что это свойство эллипса и гиперболы может быть принято в качестве их определения. Рассмотрим в плоскости точку F и прямую D (рис. 6.12). Будем предполагать, что точка F не лежит на прямой D. Докажем следующее утверждение.
Теорема 1.3. Геометрическое место точек М плоскости
, для которых отношение е расстояния r до точки F к расстоянию d до прямой D есть величина постоянная, представляет собой эллипс (при е<1) или гиперболу (при е>1). При этом точка F называется фокусом, а прямая D - директрисой рассматриваемого геометрического места.
Другая информация:
Игровые технологии как средство предупреждения
дефектов звукопроизношения у детей 2-3 лет
Педагогическая технология — относительно новое понятие педагогической науки. В 60—70-х гг. ХХ в. оно ассоциировалось главным образом с методикой применения ТСО. В исследованиях российских специалистов понятие «педагогическая технология» получило более широкий смысл, относится к большому кругу образ ...
Структура музыкального мышления
Структуру музыкального мышления, необходимо рассматривать в единстве со структурой мышления художественного. Анализ научной литературы позволяет выделить в феномене художественного мышления два структурных уровня, соответствующих двум уровням познания – эмоциональный и рациональный. К первому (эмоц ...
Практическое применение методов активизации самостоятельной работы учащихся
на уроках иностранного языка
Использование современных методов обучения является основой при организации самостоятельной работы учащихся на уроке. Одним из таких методов можно считать проблемный метод обучения. Он получил своё распространение в 20-30-х гг. 20в. в советской и зарубежной школе. Он основывается на теоретических п ...