Материалы » Разработка элективного курса по теме: "Кривые второго порядка" для учащихся старшей школы » Разработка элективного курса по теме: «Кривые второго порядка»

Разработка элективного курса по теме: «Кривые второго порядка»

Страница 12

Совершенно аналогично устанавливаются следующие оптические свойства гиперболы и параболы: лучи света, исходящие из одного фокуса.F1 гиперболы, после зеркального отражения от гиперболы кажутся исходящими из другого ее фокуса F2 (рис. 19)

Рис. 19

лучи света, исходящие из фокуса параболы, после зеркального отражения от параболы образуют пучок, параллельный оси параболы (рис. 6 18).

Рис. 20

Оптические свойства эллипса, гиперболы и параболы широко используются в инженером деле. В частности, оптическое свойство параболы используется при конструировании прожекторов, антенн и телескопов.

Назовем фронтом волны точечного источника света F линию, для всех точек Q которой путь, проделанный световым лучом, пришедшим из источника F в точку Q. одинаков. Если волна, вышедшая из точечного источника F, не претерпевает отражений, то фронт ее, очевидно, будет представлять собой окружность. Если же указанная волна отражается от некоторой кривой L, то форма ее фронта меняется в зависимости от вида кривой L. Парабола обладает следующим замечательным свойством- фронт Ф отраженной от параболы волны, при условии расположения источника света в фокусе F параболы, представляет собой прямую, параллельную директрисе D этой параболы (рис. 6 18).

В самом деле, рассмотрим прямую Ф, параллельную директрисе D. Пусть Q - произвольная точка этой прямой. Из оптического свойства параболы вытекает, что, если FM падающий луч, приходящий после отражения в точку Q, то отраженный луч MQ перпендикулярен директрисе D. Обозначим через Р точку пересечения луча MQ с директрисой D. Очевидно, сумма |QM| + |MF| равна |QM| + |MP|( по определению параболы). Так как |QM| +|\MP|=d, где d- не зависящее от точки Q расстояние между прямыми Ф и D, то для любой точки Q линии Ф сумма |QM| + |MF| одна и та же (равна d) т. е. Ф-фронт отраженной волны.

12. Эллипс, гипербола и парабола как конические сечения

Эллипс, гипербола и парабола были известны греческим геометрам более 2000 лет назад. Первое, наиболее полное сочинение, посвященное этим кривым, принадлежит Аполлонию и относится к III веку до начала нашего летоисчисления. Аполлоний дал и названия этим кривым в связи с геометрической задачей о превращении данного прямоугольника в равновеликий прямоугольник с заданным основанием.

Древнегреческие математики изучали эти кривые, конечно, не при помощи аналитической геометрии, еще не существовавшей в ту эпоху, а методами той, уже широко в то время разработанной геометрии, которую теперь называют элементарной. Сами эти кривые первоначально греки получили как сечения прямого круглого конуса плоскостями, наклоненными под разными углами к его оси.

Проведем через центр окружности перпендикуляр к ее плоскости и возьмем на нем точку S. Прямые, соединяющие S с точками окружности, образуют конус. Рассмотрим сначала сечение конуса плоскостью π, пересекающей все его образующие и не перпендикулярной оси симметрии.

Впишем в конус два шара, касающиеся плоскости π в точках F1 и F2 (рис. 21)

Рис. 21

Пусть X – произвольная точка на линии пересечения конуса с плоскостью π. Проведем через X образующую SX и найдем точки Y1, Y2 ее пересечения с вписанными шарами. Тогда XF1=XY1, XF2=XY2 как отрезки касательных к шарам, проведенных из одной точки.

Следовательно, XF1 +XF2 =Y1Y2. Но Y1Y2 – это отрезок образующей, заключенный между двумя плоскостями, перпендикулярными оси конуса, и его длина не зависит от выбора точки X. Значит, линия пересечения конуса с плоскостью π является эллипсом. Отношение его полуосей зависит от наклона секущей плоскости и, очевидно, может принимать любые значения. Следовательно, любой эллипс может быть получен как центральная проекция окружности.

Аналогично доказывается, что если секущая плоскость параллельна двум образующим конуса, то в сечении получается гипербола (рис. 22).

Рис. 22

Наконец, рассмотрим случай, когда секущая плоскость параллельна одной образующей. Впишем в конус сферу, касающуюся этой плоскости π в точке F. Эта сфера касается конуса по окружности, лежащей в плоскости σ (рис. 23).

Страницы: 7 8 9 10 11 12 13 14 15 16 17

Другая информация:

Цели и задачи изучения иностранного языка в школе
Изучение иностранного языка на ступени основного общего образования направлено на достижение следующих целей: развитие иноязычной коммуникативной компетенции в совокупности её составляющих – речевой, языковой, социокультурной, компенсаторной, учебно-познавательной: речевая компетенция – развитие ко ...

Рисование как средство диагностики интеллектуального развития ребенка
Отбор детей в специальные учреждения является весьма ответственным и вместе с тем очень трудным делом. Несмотря на усиленное внимание к этому вопросу со стороны дефектологов, а также представителей ряда других областей знаний, изучение детей в целях выявления умственной отсталости и предупреждения ...

Природа в музыке
В истории культуры природа часто была предметом восхищения, размышления, описания, изображения, мощным источником вдохновения, того или иного настроения, эмоции. Очень часто человек стремился выразить в искусстве свое ощущение природы, свое отношение к ней. Можно вспомнить Пушкина с его особым отно ...

Разделы

Copyright © 2019 - All Rights Reserved - www.grandeducator.ru