Доказательство. Убедимся, что в некоторой, специально выбранной системе координат геометрическое место точек, удовлетворяющее требованиям сформулированной теоремы, определяется при е<1 уравнением (т.e. является эллипсом), а при е>1 -уравнением (т. е. является гиперболой). Пусть R- точка пересечения прямой D и прямой А, проходящей через F перпендикулярно D (рис. 6.12). На прямой А выберем положительное направление от F к R при е<1 и от R к F при е>1 (на рис. 6.12 показан случай е<1). Так как дальнейшие рассуждения для случая е>1 и е<1 идентичны, мы проведем их подробно для е<1, т. е. для случая, определяющего эллипс. Обозначим через р расстояние между точками F и R. Вспоминая расположение директрисы эллипса относительно его центра), естественно выбрать начало О координат на прямой А слева от точки R на расстоянии
. При заданных е и р величина
может быть определена при помощи формулы (1.27). Иными словами, естественно положить
(1.36)
Будем теперь считать прямую А с выбранным началом О и направлением от F к R осью абсцисс. Ось ординат направим так, как указано на рис. 6.12. В выбранной системе координат фокус F имеет координаты (с, 0), где
(1.37)
а директриса D определяется уравнением
(1.38)
Перейдем теперь к выводу уравнения рассматриваемого геометрического места точек. Пусть М - точка плоскости с координатами (х, у) (рис. 6.12). Обозначим через r расстояние от точки М до фокуса F и через d расстояние от точки М до директрисы D. Соотношение ,
(1.39)
является необходимым и достаточным условием расположения точки М на геометрическом месте {М}.
Используя формулу расстояния между двумя точками М и F и формулу для расстояния от точки М до прямой D, получим
(1.40)
(1.41)
Из (1.39), (1.40) и (1.41) вытекает, что соотношение
(1.42)
представляет собой необходимое и достаточное условие расположения точки М с координатами х и у на геометрическом месте {М}. Поэтому соотношение (1.42) является уравнением геометрического места {М}. Путем стандартного приема «уничтожения радикалов», а также используя формулы (1.36) и (1.37), это уравнение легко привести к виду
(1.43)
где b2=а2- с2.
Для завершения доказательства нам нужно убедиться в том, что в процессе преобразования уравнения (1.42) в уравнение (1.43)не появились «лишние корни».
Убедимся в том, что расстояние r от точки М, координаты х и у которой удовлетворяют уравнению (1.43), до точки F(c,0), может быть вычислено по формуле. Используя соотношение (1.37) и формулу а =
. получим для г следующее выражение:
.(1.44)
Так как точка М, координаты х и у которой удовлетворяют (1.43), расположена слева от прямой D (для таких точек х а), а для точек прямой D:
,где e<1, то для расстояния d от М до D справедлива формула (1.41). Отсюда и из формулы (1.44)вытекает, что для рассматриваемых точек М выполняется соотношение
, т. е. уравнение (1.43) является уравнением геометрического места
. Аналогично рассматривается случай е>1.
Используя доказанную теорему и определение параболы, мы можем сформулировать следующее определение отличного от окружности эллипса, гиперболы и параболы.
Определение. Геометрическое место {М} точек М плоскости , для которых отношение е расстояния r до точки F этой плоскости к расстоянию d до прямой D, расположенной в плоскости
, есть величина постоянная, представляет собой либо эллипс (при 0<е<1), либо параболу (при е=1), либо гиперболу (при е>1). Точка F называется фокусом, прямая D - директрисой, а е - эксцентриситетом геометрического места
.
Другая информация:
Выявление уровня сформированности обществоведческих знаний у
третьеклассников
В ноябре 2009 года был проведен констатирующий эксперимент. В исследовании принимали учащиеся МОУ «Воскресенская средняя общеобразовательная школа» – экспериментальный 3 класс, всего 12 человек; учащиеся МОУ «Климовская средняя общеобразовательная школа» – контрольный 3 класс, всего 16 человек. В э ...
Научно-исследовательская работа в высшей школе
В вузах Российской Федерации научные исследования направлены на разработку фундаментальных проблем в той области, для которой данный вуз готовит специалистов. Важное место занимают также исследования по проблемам высшей школы, совершенствованию учебного процесса, повышению качества подготовки выпус ...
Разработка методического обеспечения для обучения аудированию
с использованием видеофильма «101 далматинец»
1. Фильм составляет неотъемлемую часть работы учителя - окончание работы над разделом (темой) учебника “New Millenium English” (10 класс, авторы Гроза О.Л., Дворецкая О.Б. и др.) - «Animals» (животные и их защита). Те речевые образцы, которые были предметом работы учителя с учащимися в этом разделе ...