Материалы » Разработка элективного курса по теме: "Кривые второго порядка" для учащихся старшей школы » Разработка элективного курса по теме: «Кривые второго порядка»

Разработка элективного курса по теме: «Кривые второго порядка»

Страница 10

Доказательство. Убедимся, что в некоторой, специально выбранной системе координат геометрическое место точек, удовлетворяющее требованиям сформулированной теоремы, определяется при е<1 уравнением (т.e. является эллипсом), а при е>1 -уравнением (т. е. является гиперболой). Пусть R- точка пересечения прямой D и прямой А, проходящей через F перпендикулярно D (рис. 6.12). На прямой А выберем положительное направление от F к R при е<1 и от R к F при е>1 (на рис. 6.12 показан случай е<1). Так как дальнейшие рассуждения для случая е>1 и е<1 идентичны, мы проведем их подробно для е<1, т. е. для случая, определяющего эллипс. Обозначим через р расстояние между точками F и R. Вспоминая расположение директрисы эллипса относительно его центра), естественно выбрать начало О координат на прямой А слева от точки R на расстоянии. При заданных е и р величина может быть определена при помощи формулы (1.27). Иными словами, естественно положить

(1.36)

Будем теперь считать прямую А с выбранным началом О и направлением от F к R осью абсцисс. Ось ординат направим так, как указано на рис. 6.12. В выбранной системе координат фокус F имеет координаты (с, 0), где

(1.37)

а директриса D определяется уравнением

(1.38)

Перейдем теперь к выводу уравнения рассматриваемого геометрического места точек. Пусть М - точка плоскости с координатами (х, у) (рис. 6.12). Обозначим через r расстояние от точки М до фокуса F и через d расстояние от точки М до директрисы D. Соотношение ,

(1.39)

является необходимым и достаточным условием расположения точки М на геометрическом месте {М}.

Используя формулу расстояния между двумя точками М и F и формулу для расстояния от точки М до прямой D, получим

(1.40)

(1.41)

Из (1.39), (1.40) и (1.41) вытекает, что соотношение

(1.42)

представляет собой необходимое и достаточное условие расположения точки М с координатами х и у на геометрическом месте {М}. Поэтому соотношение (1.42) является уравнением геометрического места {М}. Путем стандартного приема «уничтожения радикалов», а также используя формулы (1.36) и (1.37), это уравнение легко привести к виду

(1.43)

где b2=а2- с2.

Для завершения доказательства нам нужно убедиться в том, что в процессе преобразования уравнения (1.42) в уравнение (1.43)не появились «лишние корни».

Убедимся в том, что расстояние r от точки М, координаты х и у которой удовлетворяют уравнению (1.43), до точки F(c,0), может быть вычислено по формуле. Используя соотношение (1.37) и формулу а = . получим для г следующее выражение:

.(1.44)

Так как точка М, координаты х и у которой удовлетворяют (1.43), расположена слева от прямой D (для таких точек х а), а для точек прямой D:,где e<1, то для расстояния d от М до D справедлива формула (1.41). Отсюда и из формулы (1.44)вытекает, что для рассматриваемых точек М выполняется соотношение , т. е. уравнение (1.43) является уравнением геометрического места . Аналогично рассматривается случай е>1.

Используя доказанную теорему и определение параболы, мы можем сформулировать следующее определение отличного от окружности эллипса, гиперболы и параболы.

Определение. Геометрическое место {М} точек М плоскости , для которых отношение е расстояния r до точки F этой плоскости к расстоянию d до прямой D, расположенной в плоскости , есть величина постоянная, представляет собой либо эллипс (при 0<е<1), либо параболу (при е=1), либо гиперболу (при е>1). Точка F называется фокусом, прямая D - директрисой, а е - эксцентриситетом геометрического места .

Страницы: 5 6 7 8 9 10 11 12 13 14 15

Другая информация:

Культурный подход
В связи с этим особую значимость приобретает гуманистическая ориентация педагогов на существующие общекультурные, национальные и социальные нормы поведения. Приобщение учащихся к культурным ценностям невозможно без обращения к истории общественных явлений, изучение которых поможет им принять культу ...

Особенности обучения грамматике английского языкав младшем школьном возрасте
Грамматика наряду со словарным и звуковым составом представляет собой материальную основу речи. Современный токовый словарь определяет грамматику, как раздел языкознания, в котором изучаются закономерности изменения и сочетания слов, образующих осмысленные предложения или высказывания. Умение грамо ...

Теоретические основы непрерывного образования
Существует несколько определений непрерывного образования. Приведем пример некоторых из них. Под непрерывным образованием понимается систематическая, целенаправленная деятельность по получению и совершенствованию знаний, умений и навыков как в любых видах общих и специальных учебных заведений, так ...

Разделы

Copyright © 2019 - All Rights Reserved - www.grandeducator.ru