Решаем аналогично а). , а = 3, b = 1.
F1(с; 0), F2(– с; 0).
Итак, F1(; 0) и F2(
; 0) а = 3, b = 1.
в)
, а =
, b =
.
F1(с; 0), F2(– с; 0):
Итак, а = , b =
, F1(
; 0), F2(-
; 0).
Найти координаты точек М, принадлежащих эллипсу и равноудалённых от фокусов.
Пусть М (х; у), тогда МF1 = МF2 (по условию). Т. к. F1(с; 0), F2(– с; 0): то
Если х = 0, то, подставляя его в исходное уравнение, получим: ,
Следовательно,
и
.
Взяв на плоскости прямоугольную декартову систему координат, изобразить области, определяемые следующими системами неравенств.
а)
Построим множество точек, определяемых 1-м, 2-м, 3-м неравенством.
Найдём пересечение этих множеств.
Построим эллипс но т. к. неравенство строгое, то точки эллипса не принадлежат искомой области, т.е. неравенство (2) задаёт внутренние точки эллипса.
Устанавливаем, что R = 3, (0< k <1),
Cтроим осевой прямоугольник со сторонами
и изображаем эллипс.
Строим множество точек, заданных вторым неравенством. Для этого строим прямую и штрихуем определяемую область.
Рис. 29
Аналогичные рассуждения для построения области, заданной неравенством у + 2 > 0.
Построение.
б)
Построим множество точек, определяемых 1-м, 2-м, и 3-м неравенствами.
Найдём пересечение этих множеств.
I. – эллипс, точки которого не принадлежат искомой области (неравенство строгое), т.е. неравенство задаёт внешние точки эллипса. Приведём уравнение к каноническому виду
Строим осевой прямоугольник со сторонами a и b, изображаем эллипс.
Строим множество точек, заданных неравенством (2). Для этого изображаем прямую у = 3 и штрихуем определяемую область.
Рис. 30
Определить вид и расположение кривой
Решение. Дополним члены, содержащие х и у соответственно, до полных квадратов:
Отсюда получаем
Следовательно, кривая, заданная исходным уравнением, представляет собой эллипс с полуосями
Центр эллипса находится в точке .
Другая информация:
Констатирующий эксперимент по выявлению знаний в области экономики у
обучающихся профильного и базового уровней
В констатирующем эксперименте принимали участие 2 группы двух школ г.Североморска: контрольная и экспериментальная. В роли контрольной группы выступил 11Б профильный класс общеобразовательной школы №1, 20 человек. В обеих группах велось преподавание одним педагогом. В роли экспериментальной группы ...
Теоретические основы, задачи, организация и ведущие направления
логопедической работы по коррекции нарушений лексики у детей с билингвизмом
На основании полученных данных логопедического обследования основное внимание при планировании этапов коррекционной работы нами было отведено формированию лексического строя речи, были подобраны и систематизированы дидактические игры, которые могут быть использованы в логопедической работе с детьми ...
Учебный комплекс упражнений Бабайцевой В.В. для средней
общеобразовательной школы
По мнению С. И. Ожегова, комплекс – совокупность, сочетание каких – нибудь явлений, действий. В данном случае, комплекс – это совокупность упражнений направленных на формирование одной из составляющих языковедческой компетенции, т. е. обогащение словарного запаса учащихся средних классов. Комплекс ...