Решаем аналогично а). , а = 3, b = 1.
F1(с; 0), F2(– с; 0).
Итак, F1(; 0) и F2(
; 0) а = 3, b = 1.
в)
, а =
, b =
.
F1(с; 0), F2(– с; 0):
Итак, а = , b =
, F1(
; 0), F2(-
; 0).
Найти координаты точек М, принадлежащих эллипсу и равноудалённых от фокусов.
Пусть М (х; у), тогда МF1 = МF2 (по условию). Т. к. F1(с; 0), F2(– с; 0): то
Если х = 0, то, подставляя его в исходное уравнение, получим: ,
Следовательно,
и
.
Взяв на плоскости прямоугольную декартову систему координат, изобразить области, определяемые следующими системами неравенств.
а)
Построим множество точек, определяемых 1-м, 2-м, 3-м неравенством.
Найдём пересечение этих множеств.
Построим эллипс но т. к. неравенство строгое, то точки эллипса не принадлежат искомой области, т.е. неравенство (2) задаёт внутренние точки эллипса.
Устанавливаем, что R = 3, (0< k <1),
Cтроим осевой прямоугольник со сторонами
и изображаем эллипс.
Строим множество точек, заданных вторым неравенством. Для этого строим прямую и штрихуем определяемую область.
Рис. 29
Аналогичные рассуждения для построения области, заданной неравенством у + 2 > 0.
Построение.
б)
Построим множество точек, определяемых 1-м, 2-м, и 3-м неравенствами.
Найдём пересечение этих множеств.
I. – эллипс, точки которого не принадлежат искомой области (неравенство строгое), т.е. неравенство задаёт внешние точки эллипса. Приведём уравнение к каноническому виду
Строим осевой прямоугольник со сторонами a и b, изображаем эллипс.
Строим множество точек, заданных неравенством (2). Для этого изображаем прямую у = 3 и штрихуем определяемую область.
Рис. 30
Определить вид и расположение кривой
Решение. Дополним члены, содержащие х и у соответственно, до полных квадратов:
Отсюда получаем
Следовательно, кривая, заданная исходным уравнением, представляет собой эллипс с полуосями
Центр эллипса находится в точке .
Другая информация:
Содержание и современные требования к организации контроля
В условиях большей самостоятельности, при делегировании многих прав и полномочий самой школе, а значит, и повышения ее ответственности контрольно-диагностическая функция внутришкольного управления должна занять особое место в целях стимулирования деятельности учителя и ученика. Сочетание администра ...
Место прозы А.П. Чехова в школьной программе В.Я. Коровиной
Жизнь Чехова должна изучаться в школе в неразрывной связи с его творчеством, с определенными конкретно-историческими условиями, с формированием и развитием его мировоззрения. Нужно показать учащимся проникновение в семью, в гимназию, в университет "духа времени": деспотизма, рабства, форм ...
Самоорганизация младших школьников как педагогическая проблема
В психолого-педагогической литературе все чаще появляются слова: «самопознание», «самоуправление», «самоорганизация», «самореализация», «самодеятельность», «самоконтроль», «самооценка», «самовнушение», «саморазвитие». В современных концепциях развития отечественной системы образования отмечается пе ...