Материалы » Разработка элективного курса по теме: "Кривые второго порядка" для учащихся старшей школы » Разработка элективного курса по теме: «Кривые второго порядка»

Разработка элективного курса по теме: «Кривые второго порядка»

Страница 18

Решаем аналогично а). , а = 3, b = 1.

F1(с; 0), F2(– с; 0).

Итак, F1(; 0) и F2(; 0) а = 3, b = 1.

в)

, а = , b = .

F1(с; 0), F2(– с; 0):

Итак, а = , b = , F1(; 0), F2(-; 0).

Найти координаты точек М, принадлежащих эллипсу и равноудалённых от фокусов.

Пусть М (х; у), тогда МF1 = МF2 (по условию). Т. к. F1(с; 0), F2(– с; 0): то

Если х = 0, то, подставляя его в исходное уравнение, получим: , Следовательно, и .

Взяв на плоскости прямоугольную декартову систему координат, изобразить области, определяемые следующими системами неравенств.

а)

Построим множество точек, определяемых 1-м, 2-м, 3-м неравенством.

Найдём пересечение этих множеств.

Построим эллипс но т. к. неравенство строгое, то точки эллипса не принадлежат искомой области, т.е. неравенство (2) задаёт внутренние точки эллипса.

Устанавливаем, что R = 3, (0< k <1), Cтроим осевой прямоугольник со сторонами и изображаем эллипс.

Строим множество точек, заданных вторым неравенством. Для этого строим прямую и штрихуем определяемую область.

Рис. 29

Аналогичные рассуждения для построения области, заданной неравенством у + 2 > 0.

Построение.

б)

Построим множество точек, определяемых 1-м, 2-м, и 3-м неравенствами.

Найдём пересечение этих множеств.

I. – эллипс, точки которого не принадлежат искомой области (неравенство строгое), т.е. неравенство задаёт внешние точки эллипса. Приведём уравнение к каноническому виду

Строим осевой прямоугольник со сторонами a и b, изображаем эллипс.

Строим множество точек, заданных неравенством (2). Для этого изображаем прямую у = 3 и штрихуем определяемую область.

Рис. 30

Определить вид и расположение кривой

Решение. Дополним члены, содержащие х и у соответственно, до полных квадратов:

Отсюда получаем

Следовательно, кривая, заданная исходным уравнением, представляет собой эллипс с полуосями

Центр эллипса находится в точке .

Страницы: 13 14 15 16 17 18 19 20 21

Другая информация:

Элективные курсы в обучении
Элективные курсы (курсы по выбору) – новый элемент учебного плана, играющий важную роль в системе профильного обучения на старшей ступени школы. В отличие от факультативных курсов, существующих ныне в школе, элективные курсы – обязательны для старшеклассников . Цель изучения элективных курсов – ори ...

Компонентный состав Триз
Теория решения изобретательских задач в образовательном процессе представлена в качестве внедрения основных её понятий. При этом ознакомить учащихся со всеми основами ТРИЗ за один урок невозможно, поскольку они требуют тщательного разбора и осознания. В основном, знакомство начинается с изобретател ...

Практическое изучение взаимодействия учителя с родителями
С целью изучения деятельности классного руководителя нами было проведено исследование в шестом классе средней общеобразовательной школы № 47 города Омска, чтобы выявит процесс деятельности классного руководителя с родителями. Данное исследование проводилось в 6а классе, в котором насчитывается 20 ч ...

Разделы

Copyright © 2019 - All Rights Reserved - www.grandeducator.ru