Материалы » Разработка элективного курса по теме: "Кривые второго порядка" для учащихся старшей школы » Разработка элективного курса по теме: «Кривые второго порядка»

Разработка элективного курса по теме: «Кривые второго порядка»

Страница 19

Задачи для самостоятельного решения

1. Написать каноническое уравнение эллипса, длина малой оси которого равна 6, а фокусное расстояние равно 8.

2. Написать каноническое уравнение эллипса, если известно, что расстояние между концами большой и малой оси равно 5, а сумма длин полуосей равна 7.

3. Написать каноническое уравнение эллипса, если расстояния фокуса его от концов большой оси равны 2 и 18.

Материал для закрепления теме гипербола

Упражнения:

Упражнение 1: Сформулируйте и докажите для гиперболы утверждения, аналогичные утверждению из упражнения 1из темы эллипс.

Решение.

В случае с гиперболой это утверждение формулируется следующим образом: пусть модуль разности расстояний от любой точки на гиперболе до фокусов F1 и F2 равен d. Обозначим дугу гиперболы, внутри которой лежит F1, через Г. Тогда для точек X вне Г величина XF2 −XF1 меньше d, а во внутренней области – больше. Пусть точка X лежит во внутренней области, отсекаемой дугой Г. Обозначим точку пересечения луча F2X и Г через Y. Получаем, что F2X = F2Y + YX. По неравенству треугольника F1X < F1Y + YX, значит, F2X − F1X >(F2Y+YX)−(F1Y+YX)=F2Y−F1Y=d. Если же точка X лежит вне Г, то, взяв за точку Y пересечение F1X и Г, получим F1X= F1Y + YX. По неравенству треугольника F2X<F2Y +YX. Следовательно, F2X−F1X<(F2Y+YX)−(F1Y+YX)=F2Y−F1Y=d. (рис. 31)

Рис. 31

Упражнение 2. Найдите геометрическое место центров окружностей, касающихся двух данных.

Решение. Рассмотрим для определенности случай, когда окружности с центрами O1, O2 и радиусами r1, r2 лежат одна вне другой. Если окружность с центром O и радиусом r касается обеих окружностей внешним образом, то OO1 =r+r1, OO2 =r+r2 и, значит, OO1 -OO2 = = r1 - r2, т. е. O лежит на одной из ветвей гиперболы с фокусами O1, O2. Аналогично если окружность касается обеих данных внутренним образом, то ее центр лежит на другой ветви этой гиперболы. Если же одно из касаний внешнее, а другое внутреннее, то модуль разности расстояний OO1 и OO2 равен r1 +r2, т. е. O описывает другую гиперболу с теми же фокусами. Аналогично если одна окружность лежит внутри другой, то искомое ГМТ состоит из двух эллипсов с фокусами O1, O2 и большими осями, равными r1 +r2 и r1 -r2. Случай пересекающихся окружностей разберите самостоятельно.

Упражнение 3. Сформулируйте и докажите оптическое свойство гиперболы.

Решение:

Сформулируем оптическое свойство для гиперболы.

Если прямая l касается гиперболы в точке P, то l является биссектрисой угла F1 PF2, где F1 и F2 – фокусы гиперболы (рис. 4).

Предположим, что биссектриса l′ угла F1PF2 пересекает гиперболу еще в какой-нибудь точке Q (лежащей на той же дуге, что и P). Для удобства будем считать, что точка P лежит на дуге, которая ближе к фокусу F1. Обозначим через F1′ точку, симметричную F1 относительно l′. Тогда F1Q=QF1′, F1 P=PF1′; кроме того, точки F2, F1′ и P лежат на одной прямой. Итак, F2P-PF1 =F2Q-F1 Q.В силу вышеуказанных равенств получаем F2 F1 =F2P − PF1 = F2 Q− QF1. Но по неравенству треугольника F2 F1 >F2 Q−QF′

Рис. 32

Задачи:

Найти полуоси, координаты фокусов, эксцентриситет, уравнения асимптот и директрис гиперболы 9x2-16y2=144.

Решение. Приведем данное уравнение к каноническому виду (разделив его на 144):

Отсюда следует, что a2=16, b2=9. Следовательно, a=4 -действительная полуось, b=3 - мнимая полуось. Тогда Значит, фокусы имеют координаты F1(-5,0), F2(5,0). Находим эксцентриситетУравнения асимптот имеют вид , а уравнения директрис. Построить графики.

а)

I способ.

Это уравнение равносильно уравнению . Поскольку l < 0, то вершины гиперболы расположены на оси Оу. Гипербола неравнобокая, т. к. . Строим осевой прямоугольник со сторонами и , где , . Чертим график гиперболы.

Страницы: 14 15 16 17 18 19 20 21

Другая информация:

Виды кукольных театров
Среди театров кукол различают три основных типа: I. Театр верховых кукол управляемых снизу. Актёры-кукловоды в театрах такого типа обычно скрыты от зрителей ширмой, но бывает и так, что они не срываются и видны зрителям целиком или на половину своего роста. В таких театрах используются перчаточные ...

Методика обучения аудированию на иностранном языке на старшем этапе в средней общеобразовательной школе
На данном этапе обучения аудированию постепенно увеличивается не только длительность звучания текстов и количество незнакомых слов, но и меняется их характер. На старшем этапе обучения это уже не только рассказы, но и лекции, интервью, репортажи, выступления. Тексты для аудирования уже используются ...

Комплексная модернизация образования. Механизмы реализации
Основная цель комплексной модернизации - предоставить всем школьникам возможность получить качественное общее образование. В первую очередь это означает обеспечение современных условий: а) оснащенность комплексом учебного и компьютерного оборудования, функциональные возможности которого полностью о ...

Разделы

Copyright © 2018 - All Rights Reserved - www.grandeducator.ru