Указание. Задачу следует решать по заранее заготовленному чертежу.
Перед решением необходимо повторить и записать на доске формулы:
, P=3a, S=S1+S2 , S2=
(S2 - площадь основания пирам иды.)
12.
Дана правильная четырехугольная пирамида. у которой а - сторона основания, k - апофема, P - периметр основания, S1 - площадь боковой поверхности, S - площадь пирамиды.
Таблица 6
№ |
а |
k |
р |
S, |
S |
I |
6 |
12 | |||
2 |
13 |
689 | |||
3 |
16 |
288 | |||
4 |
44 |
396 | |||
5 |
352 |
416 |
Указание. Задачу следует решать по заранее заготовленному чертежу.
Перед решением следует повторить и записать на доске формулы:
, P=4a, S=S1+S2 , S2=a2 (S2 - площадь основания пирамиды.)
2)Задачи на исследование.
1.
Сколько вершин, ребер и граней имеет n-угольная пирамида?
Ответ: n + 1 вершин. n + 1 граней, 2п ребер.
2. Какое основание может иметь пирамида, у которой все ребра равны?
Решение. Плоские углы при вершине пирамиды равны 60°, так как каждая боковая грань - равносторонний треугольник. Следовательно, боковых граней меньше, чем 360°: 60° = 6. т.е. в основании может быть равносторонний треугольник, квадрат или пятиугольник.
3.
В каких пределах находится плоский угол α при вершине правильной n-угольной пирамиды. если n = 3, 4, 5, 6?
4
. У треугольной пирамиды все боковые ребра равны. Может ли высота такой пирамиды находиться на одной из граней?
Ответ: может, если в основании прямоугольный треугольник.
5.
Сравните термины: «правильная треугольная пирамида» и «правильный тетраэдр». Можно ли утверждать, что они определяют одно и то же?
6.
Боковые ребра пирамиды равны. Может ли ее основанием быть: а) прямоугольная трапеция, б) ромб?
Ответ: а) не может, поскольку такую трапецию нельзя вписать в окружность; б) может только в случае, если основание - квадрат.
7. При каком соотношении в правильной треугольной пирамиде между стороной основания а и боковым ребром b ее можно построить?
Ответ:
3)Задачи на доказательство.
1.
Докажите, что число плоских углов в n-угольной пирамиде делится на 4.
2.
Если в правильной треугольной пирамиде высота Н равна стороне основания а, то боковые ребра составляют с плоскостью основания углы в 60°. Верно ли это утверждение?
Решение. Высота пирамиды проектируется в центр окружности радиуса R, описанной около основания, α - искомый угол,
tgα = =
=
, α=60°.
3
. Доказать или опровергнуть утверждение: «если в пирамиде все ребра равны, то пирамида правильная».
Решение. Основание пирамиды - правильный многоугольник. Так как боковые ребра равны, то вершина проектируется в центр основания, следовательно, пирамида - правильная.
4.
Доказать, что сумма площадей проекций боковых граней пирамиды на основание может быть больше площади основания.
Другая информация:
Нетрадиционные уроки
1. Урок организации учебной дискуссии. 2. Интегрированный урок. 3. Урок с дидактической игрой. 4. Урок - деловая игра. 5. Урок - ролевая игра. 6. Урок - лекция. 7. Урок - семинар. Урок организация учебной дискуссии Одним из компонентов технологии развивающего обучения является особым образом органи ...
Роль и место лабораторно-практических работ в дисциплине «Технологический
практикум»
Технология определяется как наука о преобразование и использование материи, энергии информации в интересах и по плану человека. Средствами курса «Технология» предполагается, формирование у студентов качеств: творческой, думающей, активно действующей и легко адаптирующейся личности. Они необходимы д ...
Исследование чувства гражданственности у детей
Изучив психолого-педагогическую и методическую литературу, мы решили провести опытно-экспериментальную работу по данной проблеме. Исследование проводилось в МБДОУ "Детский сад № 19" Нижнекамского муниципального района Республики Татарстан. Экспериментальная группа состоит из детей дошколь ...