Указание. Задачу следует решать по заранее заготовленному чертежу.
Перед решением необходимо повторить и записать на доске формулы:
, P=3a, S=S1+S2 , S2=
(S2 - площадь основания пирам иды.)
12.
Дана правильная четырехугольная пирамида. у которой а - сторона основания, k - апофема, P - периметр основания, S1 - площадь боковой поверхности, S - площадь пирамиды.
Таблица 6
|
№ |
а |
k |
р |
S, |
S |
|
I |
6 |
12 | |||
|
2 |
13 |
689 | |||
|
3 |
16 |
288 | |||
|
4 |
44 |
396 | |||
|
5 |
352 |
416 |
Указание. Задачу следует решать по заранее заготовленному чертежу.
Перед решением следует повторить и записать на доске формулы:
, P=4a, S=S1+S2 , S2=a2 (S2 - площадь основания пирамиды.)
2)Задачи на исследование.
1.
Сколько вершин, ребер и граней имеет n-угольная пирамида?
Ответ: n + 1 вершин. n + 1 граней, 2п ребер.
2. Какое основание может иметь пирамида, у которой все ребра равны?
Решение. Плоские углы при вершине пирамиды равны 60°, так как каждая боковая грань - равносторонний треугольник. Следовательно, боковых граней меньше, чем 360°: 60° = 6. т.е. в основании может быть равносторонний треугольник, квадрат или пятиугольник.
3.
В каких пределах находится плоский угол α при вершине правильной n-угольной пирамиды. если n = 3, 4, 5, 6?
4
. У треугольной пирамиды все боковые ребра равны. Может ли высота такой пирамиды находиться на одной из граней?
Ответ: может, если в основании прямоугольный треугольник.
5.
Сравните термины: «правильная треугольная пирамида» и «правильный тетраэдр». Можно ли утверждать, что они определяют одно и то же?
6.
Боковые ребра пирамиды равны. Может ли ее основанием быть: а) прямоугольная трапеция, б) ромб?
Ответ: а) не может, поскольку такую трапецию нельзя вписать в окружность; б) может только в случае, если основание - квадрат.
7. При каком соотношении в правильной треугольной пирамиде между стороной основания а и боковым ребром b ее можно построить?
Ответ:
3)Задачи на доказательство.
1.
Докажите, что число плоских углов в n-угольной пирамиде делится на 4.
2.
Если в правильной треугольной пирамиде высота Н равна стороне основания а, то боковые ребра составляют с плоскостью основания углы в 60°. Верно ли это утверждение?
Решение. Высота пирамиды проектируется в центр окружности радиуса R, описанной около основания, α - искомый угол,
tgα =
=
=
, α=60°.
3
. Доказать или опровергнуть утверждение: «если в пирамиде все ребра равны, то пирамида правильная».
Решение. Основание пирамиды - правильный многоугольник. Так как боковые ребра равны, то вершина проектируется в центр основания, следовательно, пирамида - правильная.
4.
Доказать, что сумма площадей проекций боковых граней пирамиды на основание может быть больше площади основания.
Другая информация:
Воспитание патриотизма как основа воспитания чувства
гражданственности у детей дошкольного возраста
Чрезвычайно важным в проблемы воспитания чувств гражданственности является общепринятое мнение о том, что этот процесс необходимо начинать в дошкольном возрасте. В этот период происходит формирование духовно-нравственной основы ребенка, эмоций, чувств, мышления, механизмов социальной адаптации в об ...
Экспериментальное обоснование эффективности использования ролевых игр на
уроках английского языка как средство развития диалогической речи
Так как темой нашей дипломной работы является ролевая игра как средство развития диалогической речи учащихся на уроках английского языка, то для того, чтобы выявить условия эффективного использования ролевых игр как средства развития диалогической речи на уроке, необходимо провести исследование, ко ...
Методическая деятельность педагога Орской гимназии №2
Методическая деятельность педагога есть деятельность по обучению, развитию, воспитанию учащихся, осуществляемая посредством применения разнообразных форм, методов, средств, технологий учебно-воспитательного процесса. Эта деятельность становится научной, если она носит исследовательский характер и н ...