Материалы » Методика изучения многогранников в школьном курсе стереометрии » Опорные задачи по теме «Многогранники»

Опорные задачи по теме «Многогранники»

Страница 5

Підпис: Рис4.11Построение. Это угол между высотами трапеций ABCD и ABC1D1 проведенными из их общей вер­шины тупого угла. (Используем теорему о трех пер­пендикулярах.)

5.

Сечение BCD1A1 прямоугольного параллеле­пипеда (рис. 4.11) образует с плоскостью основания двугранный угол β. Как построить его линейный угол? Построение. Следует использовать теорему о трех перпендикулярах. Искомый угол - это угол между диагональю А1В (или D1C) .боковой грани и стороной основания АВ (или CD), лежащей в этой грани.

4.2 Задачи по теме «Пирамида».

1)Задачи на вычисление

1.

В правильной четырехугольной пирамиде вы­сота составляет с боковой гранью угол, равный 37°. Найдите угол между апофемами противоположных боковых граней.

Ответ: 74°.

2.

Боковое ребро правильной пирамиды вдвое больше ее высоты. Определите угол наклона боко­вого ребра к плоскости основания.

Ответ: 30°.

3.

Периметр основания пирамиды равен 20 см, а площадь ее основания 16 см2. Найдите периметр и площадь сечения пирамиды, проведенного парал­лельно основанию через середину бокового ребра.

Ответ:10 см, 4 см2.

4.

Боковые ребра пирамиды равны гипотенузе прямоугольного треугольника, лежащего в основа­нии, и равны 12 см. Вычислите высоту пирамиды.

Ответ: 6 см.

5

. В правильной четырехугольной пирамиде бо­ковое ребро равно 20 см, оно составляет с основа­нием угол 45°. Определите расстояние от центра основания до бокового ребра.

Решение. Искомое расстояние d равно длине высоты, опущенной из вершины равнобедренного прямоугольного треугольника на гипотенузу, которой является боковое ребро, d = 10 см.

Ответ: 10 см.

6.

Используя рис. 4.12, на котором изображена пра­вильная треугольная пирамида, заполните пустые ячейки в табл. 1 и табл. 2.

Таблица 1

а

b

h

k

β

1

6

4

2

12

45°

3

4

60°

4

4

2

Таблица 2

а

k

h

b

α

I

2

2

1

45°

3

4

2

4

4

60°

Указание. Перед решением задачи следует повто­рить и затем записать на доске формулы

NC = , ON = , OC =

Страницы: 1 2 3 4 5 6 7 8

Другая информация:

Игрушки стран Востока
Япония – уникальная островная страна с редкой по красоте природе. Особое отношение к природе, изменчивости окружающего мира (укиё), в котором заключено очарование (мудзё-но аварэ) и длительная самоизоляция Японии создали утонченную и поэтичную культуру этой страны. Японию недаром называют страной д ...

Игрушки из глины
Обилие рек с обрывистыми берегами, глинистые почвы в Нечерноземье, поля, прорезанные оврагами, давали возможность без особого труда добывать глину и иметь чистый речной песочек для смешивания с глиной, чтобы она стала более пластичной. Обычно с осени глина заготавливалась на долгий зимний период, с ...

Дифференциация как одна из основных педагогических технологий
Образовательный процесс, при котором учитываются индивидуальные различия детей, их интересы, возможности, склонности и способности, принято называть дифференцированным, а обучение в условиях этого процесса - дифференциацией. Цели дифференциации обучения: - с психолого-педагогической точки зрения - ...

Разделы

Copyright © 2019 - All Rights Reserved - www.grandeducator.ru