Материалы » Методика изучения многогранников в школьном курсе стереометрии » Опорные задачи по теме «Многогранники»

Опорные задачи по теме «Многогранники»

Страница 2

3.

По рис.4.2 и по данным элементам в табл. 2 найдите остальные элементы прямоугольного па­раллелепипеда.

Таблица 2.

а

b

с

d

D

γ

s

Q

3

4

5

5

12

7

24

45˚

8

6

15

17

17

4.

Перпендикулярным сечением наклонной 4-угольной призмы является ромб со стороной 3 см. Вычислите площадь боковой поверхности призмы, если боковое ребро равно 12 см.

5.

Найдите боковую поверхность наклонного параллелепипеда с боковым ребром 32 см и смеж­ными сторонами перпендикулярного сечения 10 см и 8 см.

6.

Сторона основания правильной четырехуголь­ной призмы равна 3 см. Высота призмы - 5 см. Найдите: диагональ основания; диагональ боковой грани; диагональ призмы; площадь основания; площадь диагонального сечения; площадь боковой поверхности; площадь поверхности призмы.

7.

Площадь боковой поверхности правильной четырехугольной призмы равна -32 см, а площадь поверхности 40 см. Найдите высоту призмы.

Решение. Площадь основания равна S=(см2), сторона основания - 2 см, периметр основания Р = 8 см, а высота призмы (см2).

Треугольная, шестиугольная и n-угольная призмы.

Перед решением задач целесообразно повторить формулы; Sб = РН и Sп = 2Sб + 2s для произволь­ной призмы, а также формулы:

Р = 3а, s = - для правильной треугольной и

Р = 6а, s = -для правильной шестиуголь­ной призмы со стороной основания а.

8.

Расстояния между боковыми ребрами наклон­ной треугольной призмы равны: 2 см, 3 см и 4 см. Боковая поверхность призмы - 45 см'. Найдите ее боковое ребро. ­

Решение. В перпендикулярном сечении призмы - треугольник (рис. 4.3), периметр которого 2 + 3 + 4 = 9 (см), поэтому боковое ребро равно 45 : 9 = 5 (см).

9.

Вычислите площадь боковой поверхности пра­вильной треугольной призмы, если известно, что площадь сечения, проходящего через средние ли­нии оснований, равна 25 см'.

Решение. В сечении - прямоугольник, у ко­торого одна сторона равна боковому ребру, а дру­гая - половина стороны основания (рис. 4.4). Следо­вательно, его площадь в 2 раза меньше площади бо­ковой грани. Итак, площадь боковой грани 50 см', а боковой поверхности – 50 ∙ 3 = 150 (см').

10.

Каждое ребро правильной треугольной приз­мы равно 12 см. Вычислите: площадь основания; площадь боковой поверхности; площадь поверхно­сти; площадь сечения, проведенного через медиану основания и боковое ребро, которые проходят через одну вершину основания.

Страницы: 1 2 3 4 5 6 7

Другая информация:

Информационные технологии в обучении математике
Очень часто сознательно или бессознательно и педагоги, и дети считают образовательный процесс тяжелым безрадостным трудом. Желание помочь ребенку подталкивает к применению новых форм и приемов педагогической техники. Применение компьютерных технологий позволяет заинтересовать, увлечь ученика. На ур ...

Города мастеров
Со временем деревни и слободы, где делали игрушки, расширялись и превращались посады, села и города ремесленников. Живущие и работающие там мастера, становились кустарями, то есть ремесленниками, использовавшими ручной труд и обычно специализирующимися в какой-то одной области производства игрушек. ...

Психологические характеристики подросткового и раннего юношеского возрастов
Приступая к своей профессиональной деятельности профконсультант должен иметь чёткое представление о закономерностях психологического развития, о тех новообразованиях которые присутствуют в том или ином возрасте. Это знание позволяет более осознанно оценить наличный уровень психологического развития ...

Разделы

Copyright © 2026 - All Rights Reserved - www.grandeducator.ru