Материалы » Понятие функции в школьной программе по математике » Логико-историческая реконструкция понятия функции

Логико-историческая реконструкция понятия функции

Страница 3

На данном этапе можно говорить о том, что происходит переход от рассмотрения рядов чисел, полученных при измерении величин (переменных, постоянных), к составлению формул, которые описывают закон изменения одной из них в зависимости от изменения другой.

Зависимости между бесконечно малыми переменными величинами

Бесконечно малые величины характерны тем, что при рассмотрении отношения между ними может быть получено выражение вида 0/0, которое не имеет смысла. Вследствие этого появилась идея рассматривать не само отношение, а число, к которому стремится данное отношение, т.е. предел отношения.

В качестве примера, где рассматривались отношения бесконечно малых величин, можно привести задачу Галилея о равноускоренном движении. Предположим, что некоторое тело движется по такому закону, что его скорость в разные моменты времени изменяется одинаково. Пусть движение начинается с положения покоя, требуется найти закон, описывающий путь, который пройдет тело за данный промежуток времени. При решении этой задачи получаем, что отношение изменения величины пути ΔS к изменению величины времени Δt не является постоянной величиной, т.е. . Значит, если бы мы вычисляли мгновенную скорость так же, как вычисляем среднюю, т.е. деля пройденное расстояние на требующееся для его прохождения время, то получили бы выражение 0/0. Вычисляя же средние скорости близкие к мгновенной, нам остается лишь посмотреть, к какой величине они стремятся.

Именно здесь встает один из ключевых вопросов в развитии понятия функция: как суметь перейти от отношения определенных величин к отношению бесконечно малых величин, которые, тем не менее, являются вполне определенными? Как вообще описать зависимость одной величины от другой? Вот здесь и появляются идеи о производной как отношения двух бесконечно малых приращений (изменений), и восстановлении зависимости по ее производной.

Позднее, в "Методе флюксий" Ньютон четко сформулировал обе задачи зависимости бесконечно малых в рамках метода исчисления: первую - по данному соотношению между флюентами (переменными) определить соотношение между флюксиями (производными - "скорости, с которыми каждая флюента увеличивается в силу порожденного движения"); вторую - по данному уравнению, содержащему флюксии, найти соотношение между флюентами.

Таким образом нам удалось проследить этапы становления понятия функции как зависимости между величинами. Теперь проследим какие результаты были получены в процессе решения задачи об аналитическом описании геометрической интерпретации зависимости.

Понятие функции как однозначной зависимости между величинами

Благодаря геометрической интерпретации зависимости между переменными в представление о функции вошел такой момент как однозначность.

Одними из первых, кто активно начали использовать систему координат для иллюстрации каких-либо процессов, были Ферма и Декарт. В своих работах Ферма дал геометрическое представление уравнения с двумя переменными с помощью системы координат. Он показал, что кривая, которая задается квадратным уравнением, есть коническое сечение – эллипс, парабола, гипербола. Существенным недостатком его теории было то, что он продолжал придерживаться античного правила однородности. "Введение" Ферма долгое время, остававшееся в рукописи, не нашло такого широкого распространения, какое получила "Геометрия" Декарта. Декарт преодолел недостаток геометрии Ферма. Он показал, что если зафиксирован единичный отрезок, то все величины, в независимости от их размерности могут быть представлены одинаковым образом, также он зафиксировал положение и угол наклона оси ординат. Теперь умножение и другие арифметические действия давали величину, однородную с исходными. Поэтому, например, каждому отрезку х и многочлену Р(х) с рациональными коэффициентами можно поставить в соответствие другой отрезок у=Р(х). Можно предположить, что Декарт и Ферма уже использовали символику, предложенную Виетом, поскольку М. Клайн говорит о том, что математическое определение производной (в виде формулы, записанной буквами, фиксирующей отношение между приращениями функций) принадлежит Ферма. Этим двум ученым удалось установить соответствие между алгебраическим видом формулы вида у=Р(х) и ее геометрической формой, тем самым они положили начало совершенно новому пониманию кривой, как линии зафиксированной определенной системой координат на плоскости, которую алгебраически можно задать уравнением.

Страницы: 1 2 3 4 5 6

Другая информация:

Цель и задачи трудового воспитания
Трудовое воспитание есть процесс вовлечения детей в разнообразные педагогически организованные виды общественно полезного труда с целью передачи им минимума производственного опыта, трудовых умений и навыков, развитие у них творческого практического мышления, трудолюбия. Человеческим трудом создают ...

Категории «технология», «педагогическая технология», «технология обучения»
Сегодня в педагогической и психологической литературе часто встречается понятие «технология». Легко установить, что означает слово «технология», образованное от латинских слов «технос» - искусство, мастерство, ремесло и «логос» - наука. Технологией обычно называют процесс переработки исходного мате ...

Самостоятельная работа, её сущность, содержание
Основополагающим требованием общества к современной школе является формирование личности, которая умела бы самостоятельно творчески решать научные, производственные, общественные задачи, критически мыслить, вырабатывать и защищать свою точку зрения, свои убеждения, систематически и непрерывно попол ...

Разделы

Copyright © 2025 - All Rights Reserved - www.grandeducator.ru