Материалы » Понятие функции в школьной программе по математике » Логико-историческая реконструкция понятия функции

Логико-историческая реконструкция понятия функции

Страница 2

Понятие функции как зависимость между величинами

Отношение между постоянными величинами

Представители ранней математики искали отношения между величинами, а не числами, но как результаты измерения величин получали ряды чисел.

Одним из примеров существования зависимости в Древней Греции является отношение золотого сечения. Деятели Древней Греции большое внимание уделяли эстетическому аспекту своих творений, которые должны были удовлетворять принципу соизмеримости основным пропорциям человека. Одним из таких отношений является отношение золотого сечения, которое фиксирует прежде всего пропорции между основными частями тела человека. Задачу о золотом сечении можно сформулировать так: "Найти такой способ разделить целое на две части – меньшую и большую, чтобы была верна пропорция: меньшая часть относится к большей так же, как большая к целому". Задачу нахождения величин, удовлетворяющих соотношению, решали в древнегреческую эпоху исходя из геометрических рассуждений, при этом использовался "словесный", описательный способ передачи сведений, ныне применяется алгебраический аппарат.

Итак, можно заметить, что изначально рассматривались ряды, составленные из чисел, полученных при измерении постоянных величин, связанных между собой определенным отношением.

Отношение переменных величин

Физические переменные величины отличаются от постоянных тем, что они изменяются под воздействием внешних факторов, например, с течением времени.

Одним из первых, кто рассмотрел отношение между переменными величинами, был Кеплер. Он решал следующую астрономическую задачу: известно расстояние, которая прошла планета за конкретный месяц, необходимо определить какое расстояние она пройдет за следующий месяц. Он сделал допущение, что для правильного расчета положения планет и звезд в заданный момент времени можно использовать конические сечения. Так, по Кеплеру планеты движутся вокруг Солнца по эллиптическим орбитам. Теперь требовалось научно предсказать положение точки на кривой в любой момент времени. Кеплер сформулировал задачу на математическом языке, что позволило использовать соответствующий аппарат. На математическом языке задача формулируется следующим образом: "Известны ряды величин х и у, существует зависимость между ними, необходимо найти форму описания этой зависимости, которая была бы проста, помогала упростить вычисления, выполненные на основе геометрических соображений". Для решения задачи он разбил эллипс на сектора, близкие, по свойствам к секторам окружности. Так Кеплер свел вычисления для эллипса к задачи о движении тела по окружности, т.е. решал следующую задачу: "Математически описать путь, пройденный точкой по прямой или окружности, находящийся в постоянном отношении ко времени". Таким образом, появилась секториальная скорость, как отношение изменения расстояния, пройденного планетой, за определенный промежуток времени. На современном математическом языке формулу секториальной скорости можно записать так: ω где dφ – изменение величины угла сектора окружности радиуса r, dt –изменение времени. Поскольку описание формулы площади сектора окружности было известно , то появилась возможность обозначить площадь сектора эллипса Sсек.эл.=ω(φ)d(φ). Так появился первый случай рассмотрения переменного (величина угла изменяется с течением времени) внутри задачи отношения величин (отношение величины расстояния к величине времени).

Страницы: 1 2 3 4 5 6

Другая информация:

Особенности грамматического строя у детей с общим недоразвитием речи
Ведущим механизмом формирования грамматического строя речи является овладение ребенком закономерностями языка, что позволяет трансформировать смысл в речевые действия. Грамматические операции процесса порождения речи является чрезвычайно сложными и предполагают достаточно высокий уровень развития а ...

Элективные курсы в образовательной области «Математика»
Среди школьных предметов математика занимает совершенно особое место. В середине прошлого века в старших классах отечественной школы много внимания и как следствие учебного времени уделялось математике. Специфика преподавания математики в старших классах во многом определяется тем, что экзамен по м ...

Сравнительная характеристика нарушений и отклонений в развитии ребенка
Сегодня одной из наиболее актуальных является проблема охраны здоровья подрастающего поколения - наиболее ранимой и незащищенной части населения, подвергающейся воздействию многообразных факторов риска развития неблагоприятных изменений в организме. По данным официальной статистики заболеваемость д ...

Разделы

Copyright © 2025 - All Rights Reserved - www.grandeducator.ru