Материалы » Методика изучения многогранников в школьном курсе стереометрии » Изучение многогранников в школьном курсе математики

Изучение многогранников в школьном курсе математики

Страница 4

Таким образом, в данном учебнике многогранники изучаются с опорой на наглядность, предметы окружающей действительности.

Весь теоретический материал темы относится либо к прямым призмам, либо к правильным призмам и правильным пирамидам. Все теоремы доказываются достаточно просто, результаты могут быть записаны формулами, поэтому в теме много задач вычислительного характера, при решении которых отрабатываются умения учащихся пользоваться сведениями из тригонометрии, формулами площадей, решать задачи с использованием таких понятий, как «угол между прямой и плоскостью», «двугранный угол» и др.

Учебник Смирновой И.М.

Данный учебник предназначен для преподавания геометрии 10-11 классах гуманитарного профиля. По сравнению с традиционным изложением в учебнике несколько сокращен теоретический материал, больше внимания уделяется вопросам исторического, мировоззренческого и прикладного характера.

Особенностью учебника является раннее введение пространственных фигур, в том числе многогранников, в п.3 «Основные пространственные фигуры». Цель – сформировать представления учащихся об основных понятиях стереометрии, ознакомить с пространственными фигурами и моделированием многогранников. Вводиться понятие многогранника как пространственной фигуры, поверхность которой состоит из конечного числа многоугольников, называемых гранями многогранника. Стороны этих многоугольников называются ребрами многогранника, а вершины многоугольников – вершинами многогранника.

Учащимся демонстрируются следующие многогранники:

- куб – многогранник, поверхность которого состоит из шести квадратов;

- параллелепипед – многогранник, поверхность которого состоит из шести параллелограммов;

- прямоугольный параллелепипед – параллелепипед, у которого грани – прямоугольники;

- призма – многогранник, поверхность которого состоит из двух равных многоугольников, называемых основаниями призмы, и параллелограммов, называемых боковыми гранями (причем у каждого параллелограмма два противоположных ребра лежат на основаниях призмы);

- прямая призма – призма, боковые грани которой - прямоугольники; правильная призма – прямая призма, основаниями которой являются правильные многоугольники;

- пирамида – многогранник, поверхность которого состоит из многоугольника, называемого основанием пирамиды, и треугольников с общей вершиной, называемых боковыми гранями пирамиды;

- правильная пирамида – пирамида, в основании которой правильный многоугольник, и все боковые ребра равны.

Показываются более сложные многогранники, в том числе правильные, полуправильные и звездчатые многогранники. Рассматривается несколько способов изготовления моделей многогранников из разверток и геометрического конструктора. Моделирование многогранников служит важным фактором развития пространственных представлений учащихся.

Таким образом, к началу непосредственного изучения темы «Многогранники» учащиеся уже знакомы (на доступном для них уровне ) с традиционным материалом по этой теме. Появляется возможность расширить представления учащихся о многогранниках, рассмотрев с ними более подробно правильные, полуправильные и звездчатые многогранники.

Основная цель данного раздела – ознакомить учащихся с понятием выпуклости и свойствами выпуклых многогранников, рассмотреть теорему Эйлера и ее приложения к решению задач, сформировать представления о правильных, полуправильных и звездчатых многогранниках.

Страницы: 1 2 3 4 5 6

Другая информация:

Реформа среднего образования
Реформирование среднего (общего) образования началось с введения Единого Государственного Экзамена (ЕГЭ). ЕГЭ - это экзамены по отдельным предметам, которые должны сдавать все выпускники полной общеобразовательной средней школы. Единство этих экзаменов заключается в двух их особенностях: а) их резу ...

Цепочка учебных затруднений на формирование понятия функции в курсе алгебры С.Ф. Горбова
Как уже отмечалось, в курсе С.Ф. Горбова понятие функции вводится с помощью специально организованных авторами ситуаций затруднения. Они оформляются в заданиях. Остальные задачи, предлагаемые в задачнике, направлены на конкретизацию понятия или применение введенного способа. С.Ф. Горбов довольно ча ...

Понятие «внеклассная работа» в педагогической литературе
В Российской педагогической энциклопедии «внеклассная работа» определяется как «составная часть учебно-воспитательного процесса в школе, одна из форм организации свободного времени учащихся». Внеклассной работе всегда уделялось пристальное внимание со стороны многих учителей, методистов и ученых. В ...

Разделы

Copyright © 2022 - All Rights Reserved - www.grandeducator.ru