Можно привести примерное тематическое планирование данной темы.
Пункт учебника |
Содержание |
Кол-во часов |
18 |
Выпуклые многогранники |
2 |
19 |
Теорема Эйлера |
2 |
20* |
Приложения теоремы Эйлера |
2 |
21 |
Правильные многогранники |
2 |
22* |
Топологически правильные многогранники |
1 |
23 |
Полуправильные многогранники |
2 |
23 |
Звездчатые многогранники |
1 |
Среди пространственных фигур особое значение имеют выпуклые фигуры и, в частности, выпуклые многогранники. Данное понятие в учебнике вводится следующим образом: многогранник называется выпуклым, если он является выпуклой фигурой, т.е. вместе с любыми двумя своими точками целиком содержит и соединяющий их отрезок. Далее рассматриваются свойства выпуклых многогранников.
После изучения выпуклых многогранников рассматривается теорема Эйлера и ее приложения. В качестве таких приложений рассматриваются задача о трех домиках и трех колодцах, проблема четырех красок, вводится понятие графа.
Выпуклый многогранник называется правильным, если его гранями являются равные правильные многоугольники, и в каждой вершине сходится одинаковое число граней. Выпуклый многогранник называется полуправильным, если его гранями являются правильные многоугольники (возможно, и с разным числом сторон), причем в каждой вершине сходится одинаковое число граней. Рассматриваются пять видов правильных многогранников, некоторые виды полуправильных и четыре звездчатых многогранника.
При изучении правильных, полуправильных и звездчатых многогранников следует использовать модели этих многогранников, изготовление которых описано в учебнике, а также графические компьютерные средства.
Учебник Александрова А.Д.
Данный учебник предназначен для классов и школ с математической специализацией, он дает богатую математическую информацию, развивает ученика, но является достаточно трудно усваиваемым. В учебнике рассматриваются такие темы, которые в основной школе не доступны даже для «сильных» учеников, например, сферическая геометрия.
Отметим особенности изучения многогранников в данном учебнике. Во-первых, многогранники изучаются после круглых тел. Во-вторых, при изучении многогранника и его элементов прослеживается связь с многоугольником. Вследствие чего возможны две последовательности изложения темы: 1) обобщить понятие многоугольника, затем разобрать аналогичные вопросы в пространстве; 2) пользуясь §21 учебника, дать сначала определение многогранника, далее обобщить понятие многоугольника. Особенностью является введение двух определений призмы (как в учебниках, рассмотренных выше, и как цилиндр, в основании которого лежит многоугольник), причем доказывается равносильность этих определений. Аналогично дается другое определение пирамиде: как конус с многоугольником в основании. Пункт 23.6 содержит раздел о триангулировании многогранника, и в нем дается другое, конструктивное определение многогранника. §24 «Выпуклые многогранники» впервые излагается в столь серьезном виде, рассматривается вопрос равносильности двух определений выпуклого многогранника. Изложение темы «Правильные многогранники» также отличается от ее изложения в учебниках по геометрии других авторских коллективов: сначала показываются пять типов правильных многогранников, построением доказывается, что все пять типов правильных многогранников существуют, и только после этого доказывается, что других правильных выпуклых многогранников быть не может. Обычно же после определения сразу доказывалась теорема, а существование показывалось позже, что усложняло методику рассказа.
Другая информация:
Экспериментальное обоснование эффективности использования ролевых игр на
уроках английского языка как средство развития диалогической речи
Так как темой нашей дипломной работы является ролевая игра как средство развития диалогической речи учащихся на уроках английского языка, то для того, чтобы выявить условия эффективного использования ролевых игр как средства развития диалогической речи на уроке, необходимо провести исследование, ко ...
Пути развития системы специализированной помощи детям с ограниченными
возможностями здоровья на современном этапе
Первый этап реформирования системы специального образования завершился определёнными позитивными изменениями в этой сфере. Второй этап реформирования предполагает несколько направлений: • создание на основе учреждений детского здравоохранения и психолого-медико-педагогических консультаций единой го ...
Язык схоластического образования и школы
Общим языком образования и школы в средние века был и оставался. Все изучалось только на нем и посредством его он был „дверью наук и образования. Естественно, этой дверью образование отделялось от народной массы и, благодаря ей, составляло, в общем, привилегию только некоторых, кто эту дверь открыв ...