График линейной функции – это "способ представления зависимости, который позволяет для каждого значения х просто увидеть готовое значение у без всяких вычислений" . График выступает в качестве геометрической модели зависимости, тогда как формула – алгебраическая модель. В курсе представлен переход от одного вида моделей к другому. Поскольку авторы говорят о неоднозначных зависимостях, то линейными функциями можно описать любые прямые, непараллельные оси ОY. На основании этого переход ГЛФ ↔ЛФ восстанавливаются однозначно.
Таким образом схема анализа способа введения понятия функции в курсе С.Ф. Горбова изображена на рис.1.3.
Историческая реконструкция понятия функции, проведенная в §1 настоящей главы, позволила выделить этапы его развития: 1) этап становления понятия функции как зависимости рядов величин, а затем переменных; 2) разделение однозначных и неоднозначных зависимостей; 3) введение понятия области определения. При этом важную роль играл вопрос о соотнесении геометрического образа и аналитической формы задания функции.
В ходе восстановления логики программы мы выделили два объекта для введения понятия линейной функции: линейное уравнение с двумя неизвестными и его график. Логика изложения представлена четырьмя блоками: раскрытие связи линейного уравнения и его графика; оформление связи линейной функции с ее геометрической моделью; введение области определения функции и рассмотрение нового способа построения прямой. Последние два блока не имеют логических связок с предыдущими. Автор рассматривает функцию как частный случай уравнения, при этом, не раскрывая представление о функции как зависимости между переменными. Мы попытались установить логические связи между геометрическими и аналитическими интерпретациями линейной функций и линейного уравнения, и увидели, что связи не являются полными. Это приводит к математическим неточностям, например, к тому, что прямая у=с не является графиком линейной функции. Другие виды функций получаются путем обобщения формы записи линейной функции.
В программе МАРО понятие функции построено в соответствии с его историческим развитием, что позволяет авторам работать с отношением между аналитической и геометрической формами задания. Связи между понятиями линейное уравнение, линейная функция и их графики восстанавливаются практически полностью, отсутствуют лишь явные переходы между алгебраическими формами задания линейной функции и линейного уравнения. В данном курсе авторы работают с понятием зависимости вообще, с любыми видами функций, рассматриваются также и неоднозначные зависимости. В силу этого линейная функция представлена лишь как частный случай однозначной зависимости.
Другая информация:
Народная игрушка. История
и современность
Народная игрушка, как и игрушка вообще, является традиционным, необходимым элементом воспитательного процесса. Через игру и игрушку ребенок познает мир, происходит его социализация в обществе. Мир народной игрушки разнообразен, удивителен и во многом неповторим. Путешествую по нему, мы можем переме ...
Особенности обучения чтению в старших классах
специальной школы 8 вида
Чтение — это один из видов речевой деятельности, представляющий собой перевод буквенного кода в звуковой и осмысление воспринятой информации. Умение читать включает в себя соотнесение зрительного образа речевой единицы (слова, словосочетания, предложения) с ее слухоречедвигательным образом и посл ...
Социальный педагог в учреждении
дополнительного образования: понятие, функции, направления
В штате учреждений дополнительного образования детей социальный педагог появился сравнительно недавно, поэтому дадим более подробную характеристику этой должности. Изучение опыта деятельности социальных педагогов в УДО позволило выделить особые их должностные функции, обеспечивающие особую позицию ...