Материалы » Понятие функции в школьной программе по математике » Введение понятия функции в программе А.Г. Мордковича "Алгебра 7"

Введение понятия функции в программе А.Г. Мордковича "Алгебра 7"

Страница 5

Это даёт право учащимся не считать равенства типа ++=0 (ai, bj, cv - константы, n, k, mÎ N) линейными уравнениями. Аналогичная ситуация с линейными функциями.

Как следствие, у учащихся нет средств определить, какому графику сопоставляется выражение типа ay=kx+c.

Принятая логика изложения не дает учащимся средств для ответа на вопрос: Графиком какой функции является данная прямая на координатной плоскости?

Равенство у=с не является для учащихся функцией.

Введение понятия функции в программе С.Ф. Горбова "Алгебра 7"

В настоящее время на ФЭП МАРО активно апробируются экспериментальные материалы для 7 класса, разрабатываемые авторами программы по математике РО для начальной школы С.Ф. Горбова и др. В разрабатываемом авторами курсе делается попытка реализовать деятельностный подход к введению понятия функции.

Единицей организации содержания в курсе является блок, в котором вводится какое-либо понятие. В программе можно выделить три содержательные линии: формирование понятия переменной, аналитическое описание геометрических объектов (работа с алгебраическими и графическими моделями), функциональная линия. Эти линии не являются изолированными, в частности, учащиеся, находясь в ситуации затруднения в рамках одной линии, могут использовать знания и методы из другой содержательной линии.

Основным принципом при конструировании материала является рассмотрение отношений между геометрическим и алгебраическим языками. При этом алгебраический язык представлен формулами, уравнениями, а геометрический - линейными и плоскостными чертежами, схемами, графиками уравнения, функции. Например, для того, чтобы записать уравнение прямой, проходящей через две заданные точки на координатной плоскости, необходимо определить координаты точек, воспользоваться общим видом линейного уравнения и записать полученное уравнение, тем самым мы совершаем действие перехода от геометрического вида модели к алгебраической.

В этой же идеологии рассматриваются зависимости между переменными. В рамках поиска класса зависимостей, которые могут быть заданы формулой, различаются однозначные и неоднозначные зависимости.

Опишем общую логику введения понятия функции.

Понятие функции представлено как однозначная зависимость между переменными величинами, которая в аналитической форме может быть записана при помощи формулы вида у= f(x) с указанием области определения независимой переменной, а в графической - графиком зависимости – кривой на координатной плоскости. В этом понятии можно выделить три аспекта, нашедшие отражение в определении:

а) наличие зависимости между переменными;

б) однозначный характер этой зависимости;

в) наличие области определения, которая понимается как множество значений независимых переменных, на которых устанавливается данная зависимость.

В формировании понятия функции можно выделить пять этапов.

Введение понятия зависимости

Первоначально идея зависимости возникает в связи с рассмотрением выражения как программы, устанавливающей соответствие между задаваемыми значениями переменных, входящих в выражение (независимых переменных), и значениями, принимаемыми выражением (зависимой переменной). В ходе рассмотрения подготовительного материала, связанного с преобразованием выражений, выясняется, что существуют выражения, различающиеся по составу и порядку действий, но принимающие одинаковые значения при любых одинаковых значениях переменных. Возникает понятие тождества и тождественных выражений. С точки зрения зависимости между переменными тождественные выражения – это выражения, описывающие одну и ту же зависимость.

Отметим, что описание зависимости с помощью формулы требует проведения соответствующих вычислений для каждого заданного значения независимой переменной.

График как средство моделирования зависимости

Страницы: 1 2 3 4 5 6 7

Другая информация:

Особенности восприятия и передачи формы изображаемых предметов
Целенаправленное восприятие — необходимое условие для полноценного отражения в рисунках предметов и явлений окружающего мира. Специальными исследованиями установлен познавательный характер детского восприятия, которое неразрывно связано с мышлением и речью. Поскольку восприятие органически входит в ...

Цель, задачи, методика исследования условий обучения групповому взаимодействию старших подростков в учреждении образования детей
В данном разделе представлена методика констатирующего эксперимента, цель которого - изучение условий обучения групповому взаимодействию старших подростков в учреждении дополнительного образования. Для достижения цели были определены следующие задачи: 1) разработать и апробировать методики исследов ...

Особенности распознавания семантически близких значений
Задания данной группы вызвали у детей, вошедших в экспериментальную группу, значительные затруднения. Детям сложно было найти лишнее слово, некоторые отвечали наугад и выбор свой никак не могли объяснить. Другие же пытались найти какое-то логическое объяснение своему решению. Так, например, в групп ...

Разделы

Copyright © 2019 - All Rights Reserved - www.grandeducator.ru