Материалы » Понятие функции в школьной программе по математике » Введение понятия функции в программе А.Г. Мордковича "Алгебра 7"

Введение понятия функции в программе А.Г. Мордковича "Алгебра 7"

Страница 1

В большинстве школ России учителями математики используется УМК А.Г. Мордковича. Приоритетной линией изложения материала, как отмечают авторы, в программе является функционально-графическая, причем функция представлена учащимся как специальный вид линейного уравнения, который удобно использовать для описания математических моделей практических ситуаций. В качестве моделей практических ситуаций автор разбирает в учебнике текстовые задачи или описывает конкретный пример, где в качестве модели выступает изучаемая функция. Так, линейная функция, изучаемая в 7 классе, моделирует равномерный процесс, тригонометрическая, изучаемая в 9 классе, – более сложный периодический. Автор утверждает, что построение материала осуществляется по схеме: функция – уравнение – преобразования, однако данный принцип нарушается при введении линейной функции, здесь схема выглядит так: уравнение – функция – преобразования.

К методическим особенностям концепции изучения функции следует отнести: отказ от формулировки определения функции при первом появлении этого понятия, постепенное введение в программу свойств функций, подлежащих изучению на различных уровнях строгости. Таким образом, предполагается сформировать у учащихся наглядно-интуитивный, рабочий и "формальный" уровни работы с понятием функция. Постепенно при рассмотрении различных функций накапливается система свойств, которые объединены автором в "инвариантное ядро".

Опишу последовательность введения представлений о линейных и квадратичных функциях в 7 классе, которую мне удалось восстановить при чтении учебника. Изучение начинается с вводной части, а именно, рассмотрения координатной прямой и числовых промежутков на ней. Далее предлагается рассмотреть координатную плоскость и координаты точек, как простейших объектов, которые можно изобразить на координатной плоскости. После рассматриваются прямые, параллельные осям координат, в рамках решения задачи построения точки по описанным (заданным) координатам, что приводит к появлению первой "прямой, удовлетворяющей уравнению".

Далее рассматривается линейное уравнение с двумя переменными и его график. Автор стартует с линейного уравнения с одним неизвестным, а затем осуществляет переход к линейному уравнению с двумя неизвестными при разборе задачи, моделью решения которой является этот вид линейного уравнения (далее мы будем рассматривать только этот вид линейного уравнения). Последующее изложение материала я опишу более подробно, поскольку это является существенным для введения понятия линейная функция.

Подготовительный этап

После того, как записан пример линейного уравнения с двумя неизвестными, сразу предлагается общий вид уравнения ax+by+c=0 (a, b≠0). Далее автор говорит о том, что решением уравнения ax+by+c=0 является пара чисел (х, у), причем таких решений бесконечно много, при этом упоминается о смысловых ограничениях, которые могут присутствовать при решении текстовых задач, что и иллюстрируется примером. После этого предлагается изобразить решения конкретного линейного уравнения с двумя неизвестными. Вследствие этого выясняется, что графической моделью (графиком) заданного линейного уравнения является прямая. Этот факт переносится на любое уравнение вида ax+by+c=0. Далее строится алгоритм нахождения координат – решений уравнения при помощи формулы ax+by+c=0.

Введение понятия линейная функция

После этого начинается рассмотрение основной темы курса алгебры 7 класса - "Линейная функция и ее график". Начинается тема с обсуждения общего способа нахождения решений линейного уравнения с двумя неизвестными, для этого производится преобразование уравнения ax+by+c=0 к виду линейной функции y=kx+m (k≠0, m - числа). Таким образом, линейной функцией объявляется частный (специальный) вид линейного уравнения с двумя неизвестными, в котором различают два вида переменных – зависимую и независимую. Поскольку линейная функция – специальный вид уравнения, то ее графиком является прямая, которую можно построить по двум точкам. После этого обсуждаются смысловые ограничения на переменную х, которые возникают при решении текстовых задач, что и подтверждается примером. Вводятся обозначения для построения функций, заданных на интервалах. Далее рассматривается наибольшее, наименьшее значение функции, и описывается графический способ решения линейных неравенств kx+m>0, kx+m<0. После авторы рассматривают прямую пропорциональность у=kx и ее график, как частный линейной функции. Здесь говорится о возможности построения графика линейной функции по графику прямой пропорциональности, вводятся термины возрастающие и убывающие функции. Далее обсуждается взаимное расположение графиков линейных функций. На этом введение понятия линейная функция завершается. Введение квадратичной функции

Страницы: 1 2 3 4 5 6

Другая информация:

Практическое применение методов активизации самостоятельной работы учащихся на уроках иностранного языка
Использование современных методов обучения является основой при организации самостоятельной работы учащихся на уроке. Одним из таких методов можно считать проблемный метод обучения. Он получил своё распространение в 20-30-х гг. 20в. в советской и зарубежной школе. Он основывается на теоретических п ...

Изучение учащихся в целях содействия профессиональному самоопределению
Особенности памяти, внимания, чувств, воли, желаний и способностей нельзя увидеть, оценить, измерить так же, как мы видим, оцениваем многие из окружающих нас предметов. Эти и ряд других качеств психики человека нельзя непосредственно созерцать ни у себя, ни у других людей. Но в то же время различны ...

Формирование познавательных умений и интересов учащихся под влиянием межпредметных связей
Развитие познавательных интересов зависит от овладения учащимися обобщенными умениями поисковой деятельности и умениями осуществлять межпредметные связи. Изучение психологии мышления доказало, что в качестве внутреннего побудителя поисковой деятельности, действующего сопряженно со знаниями и способ ...

Разделы

Copyright © 2019 - All Rights Reserved - www.grandeducator.ru