Материалы » Методика изучения функций в школьном курсе математики » Методическая схема изучения функций. Изучение функций в классе функций

Методическая схема изучения функций. Изучение функций в классе функций

Страница 1

Методические схема изучения функции.

1. Рассмотреть подводящую задачу, с помощью которой мотивируется изучение новой функции.

2. На основе математизации эмпирического материала сформулировать определение функции (сообщить формулу).

3. Составить таблицу значений функции и построить "по точкам" её график.

4. Провести исследование основных свойств функции (преимущественно по графику)

5. Рассмотреть задачи и упражнения на применение изученных свойств функции.

Особенность схемы-исследования функции имеет наглядно-геометрический подход, аналитическое исследование имеет ограниченный характер. Схема применима в изучении линейной, квадратичной, степенной и других функций, с которыми учащиеся знакомятся в курсе алгебры.

Изучение функций в классе функций. Класс линейных функций.

Типичный для математики класс функций – линейные. Первоначальное представление связывается с равномерным прямолинейным движением или с построением графика некоторой линейной функции. Рассматривая второй источник можно убедиться в том, что график отдельно взятой линейной функции не может привести к формулированию представлений об основных свойствах графиков всех линейных функций.

Первый способ: использование загущения точек на графике. а) нанесение нескольких точек; б) наблюдение – все построенные точки расположены на одной прямой; в) проверка – берём произвольное значение аргумента и вычисляем по нему значения функции; г) наносим точку на координатную плоскость – она принадлежит построенной прямой. Такой приём приведёт к пониманию того, что график любой линейной функции – прямая (выделение одного из свойств линейной функции), на его проведение потребует очень много времени и общие свойства формулируется на изолированных примерах.

Второй способ: по двум точкам. Этот способ предполагает знание соответствующего свойства графиков линейных функций, выявление новых свойств не происходит.

При обучении происходит последовательная схема этих способов.

Для изучения класса линейных функций в совокупности его общих свойств перед учащимися ставится познавательная задача исследовать класс функций в зависимости от параметров, здесь лучше всего рассмотреть несколько функций с различными параметрами,

Например: Постройте графики функций у=0.5х; у=0.5х+ 0.5; у=1.5х; у=1.5х+0.5.

Дальше необходимо их сравнить, обращая внимание на особенности, связанные с числовыми значением коэффициентов.

Например, изучая геометрический смысл коэффициентов при переменной, отличаем одинаковость углов наклонов к оси, чем меньше этот коэффициент, тем меньший угол наклона образует прямая с осью. После этого формулируется вывод о зависимости рассмотренного угла от коэффициента и вводится понятие "угловой коэффициент". Закрепляющие упражнения: на одном и том же чертеже изображены графики функций у=3х+2; у=3\4х+2. Построить на этом чертеже графики функций у=3х-1; у=3\4х -1; объяснить построение.

Страницы: 1 2 3 4 5

Другая информация:

Система упражнений для обучения диалогической речи
Диалогическая речь представляет собой сложную речевую деятельность, в которой речь одного из участников зависит от речевого поведения другого. При обучении диалогической речи нужно развить следующие умения: Запросить информацию, уметь задать вопрос. Ответить на вопрос собеседника. Понять на основан ...

Этногенез народов Кавказа
Этнос - это понятие, под которой подразумевается особая группа людей, объединенных рядом факторов, в частности языком, культурой и исторической судьбой. При этом, территориальное единство не является ключевым, т.к. члены одного и того же этноса могут проживать на различных территориях и в различных ...

Инновационные технологии в системе образования: опыт и перспективы
В современных условиях общество ставит перед образованием задачу предоставить каждому человеку свободный открытый доступ к образованию на протяжении всей жизни с учетом собственных интересов, способностей и потребностей, обеспечив при этом приспособляемость к жизни в условиях высокой скорости инфор ...

Разделы

Copyright © 2025 - All Rights Reserved - www.grandeducator.ru