Методические схема изучения функции.
1. Рассмотреть подводящую задачу, с помощью которой мотивируется изучение новой функции.
2. На основе математизации эмпирического материала сформулировать определение функции (сообщить формулу).
3. Составить таблицу значений функции и построить "по точкам" её график.
4. Провести исследование основных свойств функции (преимущественно по графику)
5. Рассмотреть задачи и упражнения на применение изученных свойств функции.
Особенность схемы-исследования функции имеет наглядно-геометрический подход, аналитическое исследование имеет ограниченный характер. Схема применима в изучении линейной, квадратичной, степенной и других функций, с которыми учащиеся знакомятся в курсе алгебры.
Изучение функций в классе функций. Класс линейных функций.
Типичный для математики класс функций – линейные. Первоначальное представление связывается с равномерным прямолинейным движением или с построением графика некоторой линейной функции. Рассматривая второй источник можно убедиться в том, что график отдельно взятой линейной функции не может привести к формулированию представлений об основных свойствах графиков всех линейных функций.
Первый способ: использование загущения точек на графике. а) нанесение нескольких точек; б) наблюдение – все построенные точки расположены на одной прямой; в) проверка – берём произвольное значение аргумента и вычисляем по нему значения функции; г) наносим точку на координатную плоскость – она принадлежит построенной прямой. Такой приём приведёт к пониманию того, что график любой линейной функции – прямая (выделение одного из свойств линейной функции), на его проведение потребует очень много времени и общие свойства формулируется на изолированных примерах.
Второй способ: по двум точкам. Этот способ предполагает знание соответствующего свойства графиков линейных функций, выявление новых свойств не происходит.
При обучении происходит последовательная схема этих способов.
Для изучения класса линейных функций в совокупности его общих свойств перед учащимися ставится познавательная задача исследовать класс функций
в зависимости от параметров, здесь лучше всего рассмотреть несколько функций с различными параметрами,
Например: Постройте графики функций
у=0.5х; у=0.5х+ 0.5; у=1.5х; у=1.5х+0.5.
Дальше необходимо их сравнить, обращая внимание на особенности, связанные с числовыми значением коэффициентов.
Например, изучая геометрический смысл коэффициентов при переменной, отличаем одинаковость углов наклонов к оси
, чем меньше этот коэффициент, тем меньший угол наклона образует прямая с осью. После этого формулируется вывод о зависимости рассмотренного угла от коэффициента и вводится понятие "угловой коэффициент". Закрепляющие упражнения: на одном и том же чертеже изображены графики функций у=3х+2; у=3\4х+2. Построить на этом чертеже графики функций у=3х-1; у=3\4х -1; объяснить построение.
Другая информация:
Общие пропорции и размеры фигуры
Размеры фигуры, предлагаемые здесь, отходят от традиционных семи с половиной высот головы и устанавливаются на восьми и трех четвертях для всей высоты фигуры. Принимая высоту головы за единицу измерения для определения пропорций фигуры, получим следующие величины: 1. Передний торс: высотой в три вы ...
Методика обучения иноязычному общению на основе метода
проектов
Технология проектов предполагает использование широкого спектра проблемных, исследовательских, поисковых методов, ориентированных четко на реальный практический результат, значимый для каждого ученика, участвовавшего в разработке проекта, а также разработку проблемы целостно с учетом различных факт ...
Анализ результатов исследования связной речи детей
младшего школьного возраста с нарушением интеллекта
В процессе обследовании связной речи на первом этапе эксперимента детям предлагалось выполнить три задания (составить рассказы по серии сюжетных картин и по одной сюжетной картине), после чего данные рассказы анализировались по следующим критериям: употребление простых предложений (распространённых ...