Методические схема изучения функции.
1. Рассмотреть подводящую задачу, с помощью которой мотивируется изучение новой функции.
2. На основе математизации эмпирического материала сформулировать определение функции (сообщить формулу).
3. Составить таблицу значений функции и построить "по точкам" её график.
4. Провести исследование основных свойств функции (преимущественно по графику)
5. Рассмотреть задачи и упражнения на применение изученных свойств функции.
Особенность схемы-исследования функции имеет наглядно-геометрический подход, аналитическое исследование имеет ограниченный характер. Схема применима в изучении линейной, квадратичной, степенной и других функций, с которыми учащиеся знакомятся в курсе алгебры.
Изучение функций в классе функций. Класс линейных функций.
Типичный для математики класс функций – линейные. Первоначальное представление связывается с равномерным прямолинейным движением или с построением графика некоторой линейной функции. Рассматривая второй источник можно убедиться в том, что график отдельно взятой линейной функции не может привести к формулированию представлений об основных свойствах графиков всех линейных функций.
Первый способ: использование загущения точек на графике. а) нанесение нескольких точек; б) наблюдение – все построенные точки расположены на одной прямой; в) проверка – берём произвольное значение аргумента и вычисляем по нему значения функции; г) наносим точку на координатную плоскость – она принадлежит построенной прямой. Такой приём приведёт к пониманию того, что график любой линейной функции – прямая (выделение одного из свойств линейной функции), на его проведение потребует очень много времени и общие свойства формулируется на изолированных примерах.
Второй способ: по двум точкам. Этот способ предполагает знание соответствующего свойства графиков линейных функций, выявление новых свойств не происходит.
При обучении происходит последовательная схема этих способов.
Для изучения класса линейных функций в совокупности его общих свойств перед учащимися ставится познавательная задача исследовать класс функций
в зависимости от параметров, здесь лучше всего рассмотреть несколько функций с различными параметрами,
Например: Постройте графики функций
у=0.5х; у=0.5х+ 0.5; у=1.5х; у=1.5х+0.5.
Дальше необходимо их сравнить, обращая внимание на особенности, связанные с числовыми значением коэффициентов.
Например, изучая геометрический смысл коэффициентов при переменной, отличаем одинаковость углов наклонов к оси
, чем меньше этот коэффициент, тем меньший угол наклона образует прямая с осью. После этого формулируется вывод о зависимости рассмотренного угла от коэффициента и вводится понятие "угловой коэффициент". Закрепляющие упражнения: на одном и том же чертеже изображены графики функций у=3х+2; у=3\4х+2. Построить на этом чертеже графики функций у=3х-1; у=3\4х -1; объяснить построение.
Другая информация:
Методическая схема изучения функций. Изучение
функций в классе функций
Методические схема изучения функции. 1. Рассмотреть подводящую задачу, с помощью которой мотивируется изучение новой функции. 2. На основе математизации эмпирического материала сформулировать определение функции (сообщить формулу). 3. Составить таблицу значений функции и построить "по точкам&q ...
Методика организации лабораторно-практической работы
Учебная педагогическая практика организуется в рамках учебного процесса, согласно учебного плана по специальности «Технология и предпринимательство», и направлена на практическое освоение студентами различных видов педагогической деятельности. Главное содержание учебной педагогической практики сост ...
Психолого-педагогическая
характеристика детей с общим недоразвитием речи III уровня
Профессор Р.Е. Левина, изучая наиболее тяжелые речевые расстройства, выделила и подробно описала такую категорию детей, у которых наблюдается недостаточная сформированность всех языковых структур. У детей данной группы в большей или меньшей степени оказываются нарушенными произношение и различение ...