Класс квадратичных функций.
Изучение класса квадратичных функций основано на преобразовании к виду : a(x-b)
+с, использовании геометрических для построения графика произвольной квадратичной функции из параболы стандартного положения – графика функции
. Квадратичная функция вводится и изучается в тесной связи с квадратичными уравнениями и неравенствами.
Первая функция этого класса –-
. Эта функция не монотонна на области определения. Если учащимся предложить найти область значения функции на
, то в большинстве случаев они записывают
. Устранение ошибки – построение графика.
Характер изменения значений функции неравномерный, что можно показать при построении графиков: а) в крупном масштабе на
; б) в мелком масштабе на
. Важно отметить свойство параболы – симметричность относительно оси ординат. Применение функции
- введение иррационального числа – графическое решение уравнения
.
Класс квадратичных функций начинается с изучения функции
и выяснения смысла коэффициента а (геометрического). Затем вводятся функции вида
и выясняется смысл второго коэффициента (например, как перенос по оси у ).
Например: задан график функции
. Построить на этом чертеже график функции
.
Достаточно сравнить значения этих функций при одних и тех же значениях аргумента. В дальнейшем это свойство можно обобщить: чтобы построить график функции
по известному графику функции
, можно произвести параллельный перенос второго графика на
единиц вдоль оси ординат. Итак, первый коэффициент при
влияет на направление ветвей, свободный член – означает параллельный перенос, выяснение значения коэффициента при х затруднено, поэтому используют обходной маневр: и рассматривают :
.
При изучении функций можно использовать системы заданий, имеющих цель – дать представление о тех или иных чертах данной функции или целого числа без указания точного значения величин, связанных с рассматриваемым вопросом.
Пример. На рисунке изображены графики функций
и
. Как относительно них пройдёт график функции
?
Другая информация:
Модель и характеристика классного руководителя
Модель (от лат. Modulus – мера, образец) – любой образ, аналог (мысленный или условный) какого-либо объекта, процесса или явления («оригинала» данной модели), используемый в качестве его «заместителя», «представителя». Исследовательская компетентность – знания, опыт в области педагогического исслед ...
Коррекционная работа по развитию музыкальных способностей у детей с
нарушенным зрением
В результате полученных данных мы посчитали необходимым разработать коррекционную программу для детей с нарушенным зрением. В качестве ориентира выступало положение о том, что музыкальная деятельность – это фактор эмоционального, творческого, нравственного, эстетического и умственного развития дете ...
Формы и методы совместной работыУДО и семьи
Функции каждого воспитательного института социально обусловлены. Перед институтами общественного воспитания стоит важная и ответственная задача обеспечения влияния на семью, помощи семье в целях ее укрепления и наиболее полного использования ее воспитательного потенциала. До сих пор многие считают ...