Данная теорема позволяет определить многогранник как фигуру, составленную из тетраэдров так, что выполнены условия.
Такое определение, которое характеризует предмет тем способом, каким он может быть построен, называется конструктивным. Полученное определение многогранника именно такое; любой многогранник строится последовательным прикладыванием тетраэдров по граням; а как строить тетраэдры – известно.
В противоположность этому определения многогранника, рассмотренные ранее, состоят в указании его характерных свойств или, иначе говоря, в точном его описании. Такие определения называют дескриптивными, т.е. описательными.
Описательное определение многогранника позволяет судить о фигуре, является ли она многогранником или нет. Посмотрел со всех сторон на данное тело, увидел, что всюду его поверхность состоит из многоугольников, - значит, многогранник. Такой же характер имеют, например, обычные определения призмы и пирамиды.
Как и для многогранника, конструктивные определения можно дать многоугольникам многогранной поверхности.
4)
Другой подход к определению многогранника представлен в книге В.Г. Болтянского «Элементарная геометрия», построенный на основе вейлевской векторной аксиоматики геометрии. Этот подход не применяется в школьных учебниках, но для примера можно привести одно из определений.
При вейлевском изложении геометрии первоначальными понятиями являются точка, вектор и следующие операции над ними: паре точек сопоставляется некоторый вектор, сумма векторов, произведение вектора на число и скалярное произведение, а также их свойства.
Наиболее известным примером многогранника является параллелепипед. Его можно описать следующим образом. Берется параллелограмм ABCD и из его вершин откладываются равные векторы АА1=ВВ1 =СС1 =DD1 =e, где с не параллелен плоскости параллелограмма ABCD
(рис. 1.3).
Определение частных видов многогранников (призмы, пирамиды и др.) в данном подходе практически не отличаются от определений в школьном курсе, однако интересен сам подход к определению на основе другой аксиоматике.
Таким образом, определение многогранника может быть дано различными способами, и в разной литературе и в разных учебниках можно встретить различные подходы к определению.
Можно дать понятию многогранника как дескриптивное, так и конструктивное определение, как определение, основанное на наглядном представлении, так и строгое. Можно определить многогранник как тело и как поверхность. Различны также определения многогранника, данные на основе различных аксиоматик. В школьных учебниках чаще дается какое-то одно определение, но полезно учащимся показывать и другие способы определения многогранника.
Как и при введении понятия многогранника, существуют различные способы введения выпуклых многогранников и правильных многогранников. Рассмотрим эти способы подробнее.
Другая информация:
Понятие учреждений дополнительного
образования, их цели, задачи и функции. Различия школьного и
дополнительного образования
Весь мир нуждается в радикальных изменениях, обновлении и обогащении духовной культуры, развитии новых технологий, формировании особого типа личностей, способных по-новому решать сложнейшие проблемы выживания цивилизации, умеющих изобретать и творить во имя украшения собственной жизни и жизни други ...
Представление об учебной задаче в начальной и
подростковых школах
В настоящее время нет описаний учебной задачи в подростковой школе. Ее структура и содержание только обсуждаются разработчиками. Отметим, что представления об учебной задачи в подростковой школе мы получили из соотнесения следующих источников, анализа материалов экспериментального курса С.Ф. Горбов ...
Структура музыкального мышления
Структуру музыкального мышления, необходимо рассматривать в единстве со структурой мышления художественного. Анализ научной литературы позволяет выделить в феномене художественного мышления два структурных уровня, соответствующих двум уровням познания – эмоциональный и рациональный. К первому (эмоц ...