Материалы » Методика изучения функций в школьном курсе математики » Различные подходы к трактовке понятия функции в курсе математики в средней школе

Различные подходы к трактовке понятия функции в курсе математики в средней школе

Задача. При каких значениях параметра а уравнение имеет ровно четыре корня?

Строим графики функций и в одной системе координат, воспринимая равенство как равенство значений выбранных функций.

Построим график четыре точки пересечения получаем для . При (координаты точки максимума (1,2)) получаем верхнее ограничение. Второй промежуток значений для : от точки минимума функции, т.е. . Основа решения – использование функциональных и графических представлений, а само решение – переход от исследования данного в уравнении к исследованию функции. При построении графика этой функции с помощью элементарных преобразований графиков наиболее трудным является оценивание значения выражения . В качестве подсказки можно воспользоваться неравенством:

Показанный метод называется функционально-графическим моделированием. Освоение его и с формальной, и с прикладной стороны в значительной мере подчинено изучение всей функциональной линии курсов алгебры и начала анализа.

Различают две основные математические трактовки понятия функции:

1) генетическую;

2) логическую.

Основные понятия, используемые при генетической трактовке: переменная величина, функциональная зависимость переменных величин, формула (выражающая одну переменную через некоторую комбинацию других переменных), декартова система координат на плоскости. Достоинство такого подхода состоит в том, подчеркивая динамический характер понятия функциональной зависимости, выявляется модельный аспект понятия функции относительно изучения явлений природы. Например, общая схема применения функции для описания результатов опыта имеет вид:

1)провести эксперимент;

2)составить по результатам эксперимента таблицу значений связанных друг с другом величин;

3)построить по табличным данным график;

4)подобрать эмпирическим путём формулу для данной функции;

5)дать развёрнутую характеристику свойств функции;

6)истолковать установленные свойства функции на языке эксперимента.

Однако ограничительная черта в этом подходе в том, что переменная всегда неявно предполагается пробегающей непрерывный ряд числовых значений. Поэтому понятие связывается с числовыми функциями числовог8о аргумента.

Логическая трактовка: обучение функциональным представлениям следует строить на основе методического анализа понятия функции в поисках понятия алгебраической системы. Здесь функция – отношение специального вида между двумя множествами, удовлетворяющее условие функциональности. Начальный этап изучения – понятие отношения. Реализация логического подхода вызывает необходимость иллюстрировать понятие функции при помощи разнообразных средств: формулы, таблицы, задание функции стрелками, перечислением пар, использованием не только числового, но и геометрического материала(теперь и геометрическое преобразование можно рассматривать как функцию). Однако наработанные таким образом общие понятия в дальнейшем связываются только с числовыми функциями одного числового аргумента, поэтому при таком подходе наблюдается определённая избыточность в формировании функции как обобщённого понятия.

Другая информация:

Методы осуществления воспитательного процесса
Метод воспитания – это способы воздействия на сознание, волю, чувства, поведение воспитанников с целью выработки у них заданных целью воспитания качеств. Метод воспитания – это способ действия воспитателя. Воспитатель может действовать по-разному: - «воздействовать на ребенка», и тогда маленький че ...

Основные методологические проблемы педагогической науки
Педагогика является сложной наукой, объединяющей и интегрирующей в себе данные всех естественных и общественных наук о человеке, о законах его развития и социального становления. Предметом педагогики являются объективные законы конкретно-исторического процесса воспитания, органически связанные с за ...

Проблема развития литературного творчества учащихся, как научная проблема
Проблемы образования в судьбах России наших дней становятся узловыми. На этапе смены парадигм культуры, науки, мировоззрения образование превращается в ведущий фактор экономического и социального развития страны. Высшим смыслом нахождения человека в образовательной среде, по верной мысли многочисле ...

Разделы

Copyright © 2019 - All Rights Reserved - www.grandeducator.ru